Quantitative nanohistological investigation of scleroderma: an atomic force microscopy-based approach to disease characterization

نویسندگان

  • Adam P Strange
  • Sebastian Aguayo
  • Tarek Ahmed
  • Nicola Mordan
  • Richard Stratton
  • Stephen R Porter
  • Susan Parekh
  • Laurent Bozec
چکیده

Scleroderma (or systemic sclerosis, SSc) is a disease caused by excess crosslinking of collagen. The skin stiffens and becomes painful, while internally, organ function can be compromised by the less elastic collagen. Diagnosis of SSc is often only possible in advanced cases by which treatment time is limited. A more detailed analysis of SSc may provide better future treatment options and information of disease progression. Recently, the histological stain picrosirius red showing collagen register has been combined with atomic force microscopy (AFM) to study SSc. Skin from healthy individuals and SSc patients was biopsied, stained and studied using AFM. By investigating the crosslinking of collagen at a smaller hierarchical stage, the effects of SSc were more pronounced. Changes in morphology and Young's elastic modulus were observed and quantified; giving rise to a novel technique, we have termed "quantitative nanohistology". An increase in nanoscale stiffness in the collagen for SSc compared with healthy individuals was seen by a significant increase in the Young's modulus profile for the collagen. These markers of stiffer collagen in SSc are similar to the symptoms experienced by patients, giving additional hope that in the future, nanohistology using AFM can be readily applied as a clinical tool, providing detailed information of the state of collagen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Scanning Electron and Atomic Force Mode Microscopy on inscription from Proto-Elamite period in Tappeh Sofalin

The study of cultural heritage artifacts and the research of a protection and restoration intervention create with - and are often limited to - a complete characterization of their surface. This is not only factual for museum objects, but also for archaeological artifacts, because the object as it was discovered may contain precious unknown information that could be lost by too much aggressive ...

متن کامل

Characterization of Bi2Te3 Nanostructure by Using a Cost-Effective Chemical Solution Route

An efficient and cost-effective approach in the synthesis process of the bismuth telluride (Bi2Te3) powders and pellets were developed based on a chemical solution route. The route consists of dissolving of both the bismuth (III) nitrate pentahydrate, Bi(NO3)3.5H2O, and tellurium dioxide, TeO2 into the same inorganic nitric a...

متن کامل

Three-Dimensional Kelvin Probe Microscopy for Characterizing In-Plane Piezoelectric Potential of Laterally Deflected ZnO Micro-/Nanowires

Potential characterization of deflected piezoelectric nanowires (NWs) is of great interest for current development of electromechanical nanogenerators that harvest ambient mechanical energy. In this paper, a Kelvin probe microscopy (KPM) technique hybridizing scanning KPM (SKPM) with atomic force microscope (AFM) surface-approach spectroscopy methods for characterizing in-plane piezoelectric po...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

Mechanical Characterization of Normal and Cancerous Breast Tissue Specimens Using Atomic Force Microscopy

Title of dissertation: MECHANICAL CHARACTERIZATION OF NORMAL AND CANCEROUS BREAST TISSUE SPECIMENS USING ATOMIC FORCE MICROSCOPY Rajarshi Roy Dissertation directed by: Professor Jaydev P. Desai Department of Mechanical Engineering, Robotics, Automation, and Medical Systems (RAMS) Laboratory. Breast cancer is one of the most common malignancies among women worldwide. Conventional breast cancer d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017